>美國(guó)ATCC>ATCC菌種類>SA 23 釀酒酵母
Saccharomyces cerevisiae Meyen ex E.C. Hansen 拉丁名
(ATCC® 26602™) 統(tǒng)一編號(hào)
Deposited As Saccharomyces cerevisiae Hansen, teleomorph
Classification Saccharomycetes, Saccharomycetidae, Saccharomycetales, Saccharomycetaceae, Saccharomycetaceae, Saccharomyces, cerevisiae
Strain Designations 別名 SA 23 [CCY 48-88, NRRL Y-11857, NRRL Y-11877, VTT C-82063]
Alternate State Candida robusta Diddens et Lodder
Application 用途 Degrades molasses;
Degrades sorghum juice;
Produces beta-fructofuranosidase beta-fructosidase;
Produces carbonyl reductase (NADPH);
Produces citric acid citrate;
Produces ethyl alcohol ethanol;
Produces alcohol from cane molasses;
Produces citric acid from molasses;
Produces ethanol at elevated temperatures;
Produces ethanol from sweet sorghum juice;
Biosafety Level 生物安全等級(jí) 1
Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.
Product Format 提供形式 freeze-dried
Type Strain 模式菌種 no
Preceptrol® no
Comments 注釋 Highly flocculent yeast
Sugar-tolerant
Kinetics of alcohol fermentation
Immobilization
Xylose metabolism
The synthesis of enzymes in both the glycolytic and hexose monophosphate pathways is regulated by nitrogen limitation and by the glucose concentration in the medium.
Lysine metabolism
This yeast was re-identified as Saccharomyces cerevisiae based on the multigene sequence analysis.
Medium 提供形式 ATCC® Medium 200: YM agar or YM broth
ATCC® Medium 28: Emmons' modification of Sabouraud's agar
ATCC® Medium 323: Malt agar medium
Growth Conditions 生長(zhǎng)條件
Temperature 培養(yǎng)溫度: 30.0°C
Atmosphere 需氧情況: Typical aerobic
Sequenced Data
18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 26S ribosomal RNA gene, partial sequence
GGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAAAGAAATTTAATAATTTTGA
AAATGGATTTTTTTGTTTTGGCAAGAGCATGAGAGCTTTTACTGGGCAAGAAGACAAGA
GATGGAGAGTCCAGCCGGGCCTGCGCTTAAGTGCGCGGTCTTGCTAGGCTTGTAAGTTTCTTT
CTTGCTATTCCAAACGGTGAGAGATTTCT
GTGCTTTTGTTATAGGACAATTAAAACCGTTTCAATACAACACACTGTGGAGTTTTCATATC
TTTGCAACTTTTTCTTTGGGCATTCGAGCAATCGGGGCCCAGAGGTAACAAACACAAACAA
TTTTATCTATTCATTAAATTTTTGTCAAAAACAAGAATTTTCGTAACTGGAAATTTTAAAATAT
TAAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATG
CGATACGTAATGTGAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCG
CCCCTTGGTATTCCAGGGGGCATGCCTGTTTGAGCGTCATTTCCTTCTCAAACATTCTGTTTGGTAGT
GAGTGATACTCTTTGGAGTTAACTTGAAATTGCTGGCCTTTTCATTGGATGTTTTTTTTCCAAAGAG
AGGTTTCTCTGCGTGCTTGAGGTATAATGCAAGTACGGTCGTTTTAGGTTTTACCAACTGCGGCT
AATCTTTTTTTATACTGAGCGTATTGGAACGTTATCGATAAGAAGAGAGCGTCTAGGCGAACA
ATGTTCTTAAAGTTTGACCTCAAATCAGGTAGGAGTACCCGCTGAACTTAAGCATATCAATAA
D1D2 region of the 26S ribosomal RNA gene
ATATCAATAAGCGGAGGAAAAGAAACCAACCGGGATTGCCTTAGTAACGGCGAGTGAA
GCGGCAAAAGCTCAAATTTGAAATCTGGTACCTTCGGTGCCCGAGTTGTAATTTGGAGAGGG
CAACTTTGGGGCCGTTCCTTGTCTATGTTCCTTGGAACAGGACGTCATAGAGGGTGAGAATCCC
GTGTGGCGAGGAGTGCGGTTCTTTGTAA
AGTGCCTTCGAAGAGTCGAGTTGTTTGGGAATGCAGCTCTAAGTGGGTGGTAAATTCCATC
TAAAGCTAAATATTGGCGAGAGACCGATAGCGAACAAGTACAGTGATGGAAAGATGAAA
AGAACTTTGAAAAGAGAGTGAAAAAGTACGTGAA
ATTGTTGAAAGGGAAGGGCATTTGATCAGACATGGTGTTTTGTGCCCTCTGCTCCTTGTGGG
TAGGGGAATCTCGCATTTCACTGGGCCAGCATCAGTTTTGGTGGCAGGATAAATCCATA
GGAATGTAGCTTGCCTCGGTAAGTATTATAGCCTGTGGGAATACTGCC
AGCTGGGACTGAGGACTGCGACGTAAGTCAAGGATGCTGGCATAATGGTTATATGCCGC
Name of Depositor寄存者 DP Rose
Isolation 分離基物 Sugar refinery sample, England
References 參考文獻(xiàn) Mohite U, SivaRaman H. Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells. Biotechnol. Bioeng. 26: 1126-1127, 1984.
Sardinas JL. Calf rennet substitutes. Process Biochem. 11: 10-17, 1976.
Chan E, et al. Production, separation and purification of yeast invertase as a by-product of continuous ethanol fermentation. Appl Microbiol Biotechnol 36: 44-47, 1991.
Pundle A, Prabhune A, Sivaraman H. Immobilization of Saccharomyces uvarum cells in porous beads of polyacrylamide gel for ethanolic fermentation. Appl Microbiol Biotechnol 29: 426-429, 1988.
Thomas KC, Ingledew WM. Lysine inhibition of Saccharomyces cerevisiae: role of repressible L-lysine epsilon-aminotransferase. World J. Microbiol. Biotechnol. 10: 572-575, 1994.
van Zyl C, et al. Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 1487-1494, 1993. PubMed: 8517743
Kuhn A, et al. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61: 1580-1585, 1995. PubMed: 7747971
Del Rosario EJ, Lee KJ, Rogers PL. Kinetics of alcohol fermentation at high yeast levels. Biotechnol Bioeng 21: 1477-1482, 1979.
Thomas KC, et al. Effect of nitrogen limitation of synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnol. Lett. 18: 1165-1168, 1996.
Lee JH, et al. The effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum. Biotechnol. Lett. 2: 141-146, 1980.
Rhee SK, et al. Ethanol production from desalted molasses using Saccharomyces uvarum and Zymomonas mobilis. J. Ferment. Technol. 62: 297-300, 1984.
Rose D. Fermentation of cane molasses by yeasts after preservation under conditions of high sugar concentration. J. Appl. Bacteriol. 35: 499-503, 1972.